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Theoretical studies on Chirality for Graphene 
T.K. Subramaniam and R. Premanand 

 

Abstract— These Graphene can be obtained from the parent molecule graphite by laser evaporation or laser chemical vapor deposition me-

thods (LCVD) on a SiC substrate or similar substrates. The symmetry of the molecule determines its chirality. Using a microprocessor, a control 

of the diameter (d) and the chiral angle () will result in the formation of graphene without any agglomerates. The various values of integers (n, 

m) are time-averaged using a software program and its chirality (ch) have been determined for low values of (n, m) such as (1, 2) (2, 1), (1, 3) re-
spectively. We conclude that  (2, 1) or (1, 2) are the (n, m) values for which non-agglomerated graphene structure can be generated. Higher val-

ues of (n, m) will lead to agglomeration. 

We find that there are twice as many as basis points or there are hexagonal cells, for a given (n, m). The chirality angle () increases when m 

value increases and decreases with the m value, or the chirality angle () is directly proportional to m value. 

We generated rolled hexagonal, planar unrolled and cubic nanotube lattices. The nearest neighbor (C-C) bonding distance is maintained at 

1.421Å. The angle between chirality and translation vector T


increases gradually with increasing (n, m) values. n=1 required 7 cycles for con-
vergence and n=2 required 9 cycles for convergence. The value of C-C bond increases with n value. The tubule radius and height increases with 
(n, m) value. 

 

Index Terms— chirality, agglomeration, LCVD – Laser Chemical Vapour Deposition, Chiral angle, substrate, translational vector, nearest 

neighbour 

——————————      —————————— 

1 INTRODUCTION                                                                     

raphene is made out of carbon atoms arranged on a ho-
neycomb (hexagonal) structure. It is obtained from gra-
phite, a three dimensional (3D) allotrope of carbon.  Gra-

phenes can be compared to benzene rings stripped out of hy-
drogen atoms. In fact, Graphite is made out of stacks of gra-
phene layers which are weakly coupled by Van der Waals 
forces. Wallace [1] in 1946 first gave the band structure of gra-
phene and showed its semi- metallic behavior. 
Graphene has a structural flexibility which is seen from its 
electronic properties. The sp2 hybridization between one s or-
bital and two p orbitals leads to a trigonal planar structure 
with a formation of a  bond between carbon atoms that are 
separated by 1.421 Å. It is the  bond that is responsible for the 
robustness of its lattice structure. The structure of graphene, 
made out of carbon atoms is a triangular lattice with a basis of 
two atoms per unit cell. It is the  bond that is responsible for 
control of conductivity. 
Owing to structural and electronic flexibility, graphene can be 
tailored chemically in different ways. We can deposit metal 
atoms on top of it [2], or we can deposit molecules on it [3].  
Intercalated compounds are also possible [4].  Geim and No-
voselov 5 have given a complete history of the „rise of Gra-
phene‟.  Also, we can incorporate nitrogen and boron in its 
structure [6]. It has potential applications in the field of elec-
tronics, superconductors, in batteries, etc. Several workers [7-
15], have expressed difficulty in producing non-agglomerated 
carbon nanotubes. Here we have made an attempt to under-
stand the theoretical basis for non-agglomeration of CNT‟s. 

 

2 CHIRAL VECTOR 

 
The structure of single-wall carbon nanotube (except for cap 
region on both ends) is specified by a vector of original hex-
agonal (also called honeycomb) lattice called the chiral vector. 
The chiral vector corresponds to a section of nanotube per-
pendicular to the tube axis. In figure 1, the unrolled hexagonal 
lattice of the nanotube is shown, in which OB is the direction 
of the nanotube axis, and OA corresponds to the chiral vector 
Ch. 
 

 
Fig.1. Chiral vector in a hexagonal lattice 

 
By considering the crystallographically equivalent sites O, A, 
B and B‟, and by rolling the honeycomb sheet so that points O 
and A coincide (and points B and B‟ coincide), a paper model 
of carbon nanotube can be constructed. The vector OB defines 
another vector namely translational vector, T. The rectangle 
generated by the chiral vector Ch and translational vector T, 
i.e., the rectangle OAB‟B in the figure is called the unit cell for 
the nanotube. The chiral vector of the nanotube is defined as, 

1 2hC na ma   

G 
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where n, m are integers (0 )m n   and 1 2,a a  are the unit 

vectors of the hexagonal lattice. In figure 2, a1 and a2 can be 
expressed using the Cartesian coordinate (x, y) as 
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Here, acc is the bond length of carbon atoms. For graphite acc = 
1.42 Å .This same value is often used for nanotubes. But, 
acc=1.44 Å is a better approximation for nanotubes. It should 
really depend on the curvature of the tube. A slightly larger 
value for more curvature is known. 
We see from equations (2) and (3), that the lengths, a1, a2, i.e., 

1 2| |,| |a a are both equal to 3 cca a . Therefore, a is the unit 

length and this is also the lattice constant. Hence 
1 2,a a  can be 

expressed in terms of lattice constant. 
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Length of chiral vector is the peripheral length of the nanotube 

 2 2

hL C a n nm m   
   (5)

 

 The angle between the vectors Ch and a1 is called chir-
al angle,. It denotes the tilt angle of the hexagons with respect 
to the direction of the nanotube axis, and it specifies the spiral 
symmetry. The chiral angle is defined by taking the inner 
product of Ch and a1, to yield an expression for cos : 

 1
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From this expression it can be shown that the chiral angle, 
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The tube diameter is then given by 

 2 2

1

L a
d n nm m   

 
   (8)

 

The translational vector, T, which is perpendicular to the chir-
al vector, is expressed as 

 
 1 2(2 ) (2 )

R

m n a n m a
T

d

  
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                              (9)

 

The length T is the unit lattice length along the tube axis direc-
tion: 

2 23 3h C C

R R

C a n nm m
T

d d

  
                 (10) 

Here, 
 if  is not a multiple of 3

3  if  is a multiple of 3
R

d n - m d
d

d n - m d


 


 

and d is the highest common division of (n,m). 
The number of hexagons in a unit cell is given by: 

 
2 22( )

R
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N

d

 
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                (11)

 

 
 
Figure 2 below shows a real space lattice of graphene. 

 
 
 
 
 
 
 
 
 

Fig. 2. Real Space Lattice of Graphene 

3 ANALYSIS 

In order to find out a solution for non-agglomerated carbon 
nanotubes we have used a web-accessible nanotube structure 
generator, namely TubeGen online-version 3.4 [16]. When the 
chiral angle is kept as low as possible then the surface area 
generated will be large and will result in non-agglomeration. 
The graphene molecule is known to occupy a large surface 
area for a given volume, like a sphere. The chiral vector (n, m) 
values have to be as low as possible, with the condition that 
n=m will produce “armchair” configuration, m=0 will produce 
a “zigzag” configuration and we are looking for a “chiral” 
configuration only.  i.e. (nm) and (m0) [17]. 
 

The equation governing the relation for the cell gutter parame-
ters 

1 2
ˆ ˆ,a a and 

3â the tubule translation vector T
r

is, 

1 2
ˆ ˆT na ma 

r
. Generally, graphene being a flat mono layer of 

carbon atoms, tightly packed into a two-dimensional (2D) ho-
neycomb (hexagonal) lattice and serves as the basic building 
block for graphite materials for all dimensionalities. Graphene 
can be wrapped up into 0 Dimension fullerenes, 1 Dimension 
nanotubes or stacked as 3 Dimensional Graphite. 

1 2
ˆ ˆ,a a  are basically unit vectors. n, m are integers. The analysis 

is done in Gaussian mode, the measuring units in Angstrom (1 
Å = 1010 m) and the lattices are hexagonal, planar unrolled, 
and cubic. Whether it is Hexagonal, or cubic or planar un-
rolled, the angle between chiral vector (ch) and tubule transla-
tion vector (T) remain same value for a given (n, m). In our 
case, we have chosen (1, 2), (2, 1), (2, 2) and (1, 3). (2, 2) hap-
pens to be arm-chair configuration which is ruled out for an 
agglomeration-free structure. This leaves with (1, 2), (2, 1) and 
(1, 3) (n, m) values. The angles for these (n, m) values between 
(ch) and (T) are 25.857, 154.143 and 30.9609 respectively. For 
all these three (n, m) values, the nearest neighbor bonding dis-
tance is 1.421 Å(C-C). We predict that (2, 1) whose angle for-
mation between (Ch) & (T) vector is 154.143 (an obtuse angle) 
should have larger surface area while folding for a given bond 
length and hence most suitable contender for non-
agglomerated graphene structure. 
The second point is that, the chiral angle for hexagonal, cubic 
and planar unrolled structures are 40.8934 (1,2), 19.1066 (2,1), 
30 (2,2) and 46.1021 (1,3), respectively. Taking away the (2,2) 
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arm-chair configuration leaves us with three choices namely 
(1,2), (2,1) and (1,3). The lower the value of the (ch) angle, less-
er will be the tubule diameter d, given by 

2 2a
d n nm m  


and hence greater will be the T (Tubule 

translation vector) value; 
3Ch

T
d

 . When the lattice length 
(T) increases, the number of hexagons in a unit cell will in-
crease giving rise to better electrical conductivity. The (n, m) 
values (2, 1) whose chiral angle (ch) is 19.1066 (2, 1) is ideal 
for non-agglomerated graphene. In terms of number of sub-
cells, both (1, 2) and (2, 1) have the same number, namely 14 
sub-cells, irrespective of the Hexagonal, planar unrolled or 
cubic structures. (3, 1) has 26 sub cells which will increase the 
chances for agglomeration because of the density of (C-C) 
bonds. The basis points are twice as much as their number of 
sub-cells respectively irrespective of whether they have hex-
agonal, planar (unrolled) or cubic structures.Tables 1,2 and 3 
below give the (n,m)  values for (1,2), (1,3) and (2,1) respective-
ly. 

 
Table 1  Chirality (1,2) 28 basis points 

 

 

a1 a2 a3 

C 1.094104 0.000000 -5.680817 

C 0.207600 1.074228 -5.399064 

C 0.630415 0.894227 -2.96459 

C -0.261656 1.062356 -4.057834 

C -1.092705 -0.055327 -3.776081 

C -0.674828 -0.861204 -4.869325 

C 0.717514 -0.825977 -4.587573 

C 0.942019 0.556475 -0.530116 

C 0.197674 1.076099 -1.62336 

C -1.019043 0.398267 -1.341607 

C -0.968954 -0.508127 -2.434851 

C 0.315043 -1.047766 -2.153099 

C 0.997599 -0.449288 -3.246342 

C 1.087442 0.120556 1.904358 

C 0.622133 0.900009 0.811114 

C -0.765612 0.781602 1.092867 

C -1.092147 -0.065412 -0.000377 

C -0.143005 -1.084718 0.281375 

C 0.725109 -0.819318 -0.811868 

C 0.936842 0.565148 3.245588 

C -0.377121 1.027056 3.527341 

C -1.022676 0.388842 2.434097 

C -0.575825 -0.930317 2.71585 

C 0.324702 -1.044812 1.622606 

C -0.772796 0.774501 4.868571 

C -0.907065 -0.611799 5.150324 

C -0.132985 -1.085993 4.05708 

C 1.041031 -0.336630 4.338832 

 

 

 

 

 

 

 

Table 2  Chirality (1,3) 52 basis points 

 

 

a1 a2 a3 

C 1.450462 0.000000 -7.727607 

C 0.810853 1.202646 -7.322905 

C 1.269941 0.700777 -4.945224 

C 0.504175 1.360017 -5.944346 

C -0.845805 1.178327 -5.539644 

C -1.410029 0.340086 -6.538766 

C -1.070231 -0.979002 -6.134064 

C -0.171241 -1.440318 -7.133187 

C 1.098506 -0.947166 -6.728484 

C 1.44977 0.044807 -2.567543 

C 1.068723 0.980648 -3.566665 

C -0.215653 1.434341 -3.161963 

C -1.099963 0.945474 -4.161085 

C -1.39885 -0.383482 -3.756383 

C -0.809001 -1.203893 -4.755505 

C 0.545948 -1.343793 -4.350803 

C 1.290983 -0.661212 -5.349926 

C 1.398258 0.385634 -1.188984 

C 0.461921 1.374943 -0.784282 

C -0.548015 1.342952 -1.783404 

C -1.419861 0.296366 -1.378702 

C -1.268861 -0.702731 -2.377824 

C -0.126665 -1.444921 -1.973122 

C 0.847617 -1.177024 -2.972245 

C 1.037919 1.013195 1.593399 

C 0.124441 1.445114 0.594277 

C -1.128645 0.911043 0.998979 

C -1.449699 -0.047038 -0.000143 

C -0.771425 -1.228309 0.404559 

C 0.21786 -1.434007 -0.594563 

C 1.310793 -0.621016 -0.189861 

C 1.385678 0.428645 3.971081 

C 0.769533 1.229495 2.971958 

C -0.589239 1.325382 3.37666 

C -1.311747 0.618998 2.377538 

C -1.246547 -0.741592 2.78224 

C -0.459805 -1.375652 1.783118 

C 0.883573 -1.150278 2.18782 

C 1.420316 -0.294180 1.188697 

C 1.245404 0.743510 5.349639 

C 0.07974 1.448268 5.754341 

C -0.885342 1.148916 4.755219 

C -1.447554 -0.091799 5.159921 

C -1.036358 -1.014791 4.160799 

C 0.262055 -1.426593 4.565501 

C 1.130046 -0.909305 3.566378 

C -0.26425 1.426188 7.1329 

C -1.330243 0.578181 7.537602 

C -1.385016 -0.430777 6.53848 

C -0.417089 -1.389200 6.943182 

C 0.591279 -1.324473 5.94406 

C 1.428726 -0.250164 6.348762 
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Table 3  Chirality (2,1) (28 basis points) 

 

 

a1 a2 a3 

C 1.094104 0.000000 -5.680817 

C 1.094058 -0.010101 -1.905112 

C 0.997599 0.449288 -3.246342 

C -0.251837 1.064727 -3.528095 

C -0.674828 0.861204 -4.869325 

C -0.973604 -0.499160 -5.151078 

C 1.001705 0.440059 0.529362 

C 0.725109 0.819318 -0.811868 

C -0.666848 0.867397 -1.093621 

C -0.968954 0.508127 -2.434851 

C -0.682750 -0.854937 -2.716604 

C -0.261656 -1.062356 -4.057834 

C 0.993409 -0.458479 -4.339586 

C 0.732642 0.812589 2.963836 

C 0.324702 1.044812 1.622606 

C -0.964221 0.517051 1.340853 

C -1.092147 0.065412 -0.000377 

C -0.271453 -1.059895 -0.282130 

C 0.197674 -1.076099 -1.623360 

C 0.334334 1.041770 5.398310 

C -0.132985 1.085993 4.057080 

C -1.091497 0.075492 3.775327 

C -1.022676 -0.388842 2.434097 

C 0.187731 -1.077878 2.152344 

C 0.622133 -0.900009 0.811114 

C -0.772796 -0.774501 4.868571 

C 0.613797 -0.905714 4.586819 

C 0.936842 -0.565148 3.245588 

 

4 CONCLUSION 

From our theoretical analysis on graphene, we conclude that 

the (n, m) values, namely, (2, 1) or (1, 2) are the chosen two sets 

of numbers to get a non-agglomerated graphene that can be 

generated. Higher values of (n, m) will lead to agglomeration. 
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